Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Distributed multi-agent unmanned aerial systems (UAS) have the potential to be heavily utilized in environmental monitoring, especially in wetland monitoring. Deep active learning algorithms provide key tools to analyze the sensed images captured during monitoring and interpret them precisely. However, these algorithms demand significant computational resources that limit their use with distributed UAS. In this paper, we propose a novel algorithm for consensus-enabled active learning that drastically reduces the computational demand while increasing the overall model accuracy. Once each of the UAS obtains a labeled subset of images through active learning, we update the weights of the model for three epochs only on the new images to reduce the computational cost, allowing for an increased operational time. The group of UAS communicates the model weights instead of the raw data and then leverages consensus to agree on updated weights. The consensus step mitigates the impact on weights caused by the updates and generalizes the knowledge of each individual UAS to the whole system, which results in increased model accuracy. Our method achieved an average of 11.15% increase in accuracy over 25 acquisition iterations whilst utilizing only 16.8% of the processor time compared to the centralized method of active learning.more » « lessFree, publicly-accessible full text available March 1, 2026
-
null (Ed.)Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system.more » « less
An official website of the United States government
